The Effect of Carbon Nanotubes and Carbon Microfibers on the Piezoresistive and Mechanical Properties of Mortar

Author:

Kanellopoulou Irene1ORCID,Kartsonakis Ioannis A.12ORCID,Chrysanthopoulou Athanasia I.1,Charitidis Costas A.1ORCID

Affiliation:

1. Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographos, GR-15773 Athens, Greece

2. Physical Chemistry Laboratory, School of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

Abstract

Sustainability, safety and service life expansion in the construction sector have gained a lot of scientific and technological interest during the last few decades. In this direction, the synthesis and characterization of smart cementitious composites with tailored properties combining mechanical integrity and self-sensing capabilities have been in the spotlight for quite some time now. The key property for the determination of self-sensing behavior is the electrical resistivity and, more specifically, the determination of reversible changes in the electrical resistivity with applied stress, which is known as piezoresistivity. In this study, the mechanical and piezoresistive properties of mortars reinforced with carbon nanotubes (CNTs) and carbon micro-fibers (CMFs) are determined. Silica fume and a polymer with polyalkylene glycol graft chains were used as dispersant agents for the incorporation of the CNTs and CMFs into the cement paste. The mechanical properties of the mortar composites were investigated with respect to their flexural and compressive strength. A four-probe method was used for the estimation of their piezoresistive response. The test outcomes revealed that the combination of the dispersant agents along with a low content of CNTs and CMFs by weight of cement (bwoc) results in the production of a stronger mortar with enhanced mechanical performance and durability. More specifically, there was an increase in flexural and compressive strength of up to 38% and 88%, respectively. Moreover, mortar composites loaded with 0.4% CMF bwoc and 0.05% CNTs bwoc revealed a smooth and reversible change in electrical resistivity vs. compression loading—with unloading comprising a strong indication of self-sensing behavior. This work aims to accelerate progress in the field of material development with structural sensing and electrical actuation via providing a deeper insight into the correlation among cementitious composite preparation, admixture dispersion quality, cementitious composite microstructure and mechanical and self-sensing properties.

Funder

European Unions’ HORIZON 2020 research and innovation program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3