Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of death across the world. Recent evidence suggests that STAT3 regulates proliferative, survival, metastasis, and angiogenesis genes in HCC. Novel agents that suppress STAT3 activation can be used to prevent or treat HCC. We used a functional proteomics tumor pathway technology platform and multiple HCC cell lines to investigate the effects of acacetin (ACN) on STAT3 activation, protein kinases, phosphatases, products of STAT3-regulated genes, and apoptosis. ACN was found to inhibit STAT3 activation in a dose- and time-dependent manner in HCC cells. Upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2 were also inhibited. The ACN inhibition of STAT3 was abolished by vanadate treatment, suggesting the involvement of tyrosine phosphatase activity. ACN was found to suppress the protein expression of genes involved in proliferation, survival, and angiogenesis via STAT3 inhibition. ACN appears to be a novel STAT3 inhibitor and may be a promising therapeutic compound for application in the treatment of HCC and other cancers.
Funder
Deanship of Scientific Research-King Faisal University
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献