Thermal Investigations of Annelated Triazinones—Potential Analgesic and Anticancer Agents

Author:

Sztanke Małgorzata1ORCID,Sztanke Krzysztof2ORCID,Ostasz Agnieszka3ORCID,Głuchowska Halina3,Łyszczek Renata3

Affiliation:

1. Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland

2. Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland

3. Department of General and Coordination Chemistry and Crystallography, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, M.C. Skłodowskiej Sq. 2, 20-031 Lublin, Poland

Abstract

In this article, for the first time, TG-DSC and TG-FTIR investigations of potential pharmaceutics, i.e., analgesic and anticancer active annelated triazinones (1–9) have been presented. The thermal behaviour of these molecules was established in oxidative and inert conditions. The solid–liquid phase transition for each compound (1–9) was documented by one sharp DSC peak confirming the high purity of each sample studied. All the molecules were characterised in terms of calorimetric changes and mass changes during their heating. They revealed high thermal stability in oxidative and inert conditions. The observed tendency in thermal stability changes in relation to a substituent present at the phenyl moiety was found to be similar in air and nitrogen. It was confirmed that annelated triazinones 1–9 were stable up to a temperature range of 241–296 °C in air, and their decomposition process proceeded in two stages under oxidative conditions. In addition, it was established that their thermal stability in air decreased in the following order of R at the phenyl moiety: 4-Cl > 3,4-Cl2 > H > 3-Cl > 4-CH3 > 2-CH3 > 3-CH3 > 2-Cl > 2-OCH3. The volatile decomposition products of the investigated molecules were proposed by comparing the FTIR spectra collected during their thermogravimetric analysis in nitrogen with the spectra from the database of reference compounds. None of annelated triazinones 1–9 underwent any polymorphic transformation during thermal studies. All the compounds proved to be safe for erythrocytes. In turn, molecules 3, 6, and 9 protected red blood cells from oxidative damage, and therefore may be helpful in the prevention of free radical-mediated diseases.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3