Abstract
In this paper, we propose the first analytical procedure—using a screen-printed carbon electrode modified with carbon nanofibers (SPCE/CNFs)—for the detection and quantitative determination of an electroactive disubstituted fused triazinone, namely 4-Cl-PIMT, which is a promising anticancer drug candidate. The electrochemical performances of the sensor were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and square-wave adsorptive stripping voltammetry (SWAdSV). The presence of carbon nanofibers on the sensor surface caused a decrease in charge-transfer resistance and an increase in the active surface compared to the bare SPCE. Under the optimised experimental conditions, the proposed voltammetric procedure possesses a good linear response for the determination of 4-Cl-PIMT in the two linear ranges of 0.5–10 nM and 10–100 nM. The low limits of detection and quantification were calculated at 0.099 and 0.33 nM, respectively. In addition, the sensor displays high reproducibility and repeatability, as well as good selectivity. The selectivity was improved through the use of a flow system and a short accumulation time. The SWAdSV procedure with SPCE/CNFs was applied to determine 4-Cl-PIMT in human serum samples. The SWAdSV results were compared to those obtained by the ultra-high-performance liquid chromatography coupled with electrospray ionization/single-quadrupole mass spectrometry (UHPLC-ESI-MS) method.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献