Insecticidal Activity and Insecticidal Mechanism of Total Saponins from Camellia oleifera

Author:

Cui Chuanjian,Yang Yunqin,Zhao Tianyu,Zou Kangkang,Peng Chuanyi,Cai Huimei,Wan Xiaochun,Hou RuyanORCID

Abstract

Chemical pesticides are commonly used during the cultivation of agricultural products to control pests and diseases. Excessive use of traditional pesticides can cause environmental and human health risks. There are ongoing searches for new plant-derived pesticides to reduce the use of chemical pesticides. In this study, tea saponin extracts of different purities were extracted from Camellia oleifera seeds using AB-8 macroporous resin and gradient elution with ethanol. The insecticidal effects of the tea saponin extracts were evaluated by contact toxicity tests and stomach toxicity tests using the lepidopteran pest of tea plantation, Ectropis obliqua. The total saponins extracted using 70% ethanol showed strong contact toxicity (LC50 = 8.459 mg/L) and stomach toxicity (LC50 = 22.395 mg/L). In-depth mechanistic studies demonstrated that tea saponins can disrupt the waxy layer of the epidermis, causing serious loss of water, and can penetrate the inside of the intestine of E. obliqua. After consumption of the tea saponins, the intestinal villi were shortened and the cavities of the intestinal wall were disrupted, which resulted in larval death. This study highlights the potential of tea saponins as a natural, plant-derived pesticide for the management of plant pests.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference43 articles.

1. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review

2. Moth pests collected in light traps of tea plantations in North East India: Species composition, seasonality and effect of habitat type;Sinu;Curr. Sci.,2013

3. Identification and Comparative Study of Chemosensory Genes Related to Host Selection by Legs Transcriptome Analysis in the Tea Geometrid Ectropis obliqua

4. Research of resistance mechanism to Ectropis oblique by tea plant;Wang;J. Tea Sci.,2014

5. Monitoring and Risk Assessment of Pesticide Residues in Tea Samples from China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3