Raman Spectroscopy for the Competition of Hydrogen Bonds in Ternary (H2O–THF–DMSO) Aqueous Solutions

Author:

Liu ,Zhang ,Huang ,Wu ,Ouyang

Abstract

The effects of hydrogen bonds on the molecular structure of water-tetrahydrofuran (H2O–THF), water-dimethyl sulfoxide (H2O–DMSO), and water-tetrahydrofuran-dimethyl sulfoxide (H2O–THF–DMSO) in binary aqueous solutions and ternary aqueous solutions were studied using Raman spectroscopy. The results indicate that in the binary aqueous solution, the addition of THF and DMSO will generate hydrogen bonds with water molecules, resulting in changes in the peak positions of S=O bonds and C–O bonds. Compared with the binary aqueous solutions, the hydrogen bonds between DMSO and THF, and the hydrogen bonds between DMSO and H2O in the ternary aqueous solutions are competitive, and the hydrogen bond competition is susceptible to water content. In addition, the formation of hydrogen bonds will destroy the fully hydrogen-bonded water and make it change to the partially hydrogen-bonded water. By fitting the spectra into the three Gaussian components assigned to water molecules with different hydrogen bonding (HB) environments, these spectral features are interpreted by a mechanism that H2O in different solution systems has equal types of water molecules with similar HB degrees-fully hydrogen-bonded H2O (FHW) and partially hydrogen-bonded H2O (PHW). The ratio of the intensity transition from FHW to PHW is determined based on Gaussian fitting. Therefore, the variation of hydrogen bond competition can be supplemented by the intensity ratio of PHW/FHW ((IC2 + IC3)/IC1). This study provides an experimental basis for enriching the hydrogen bonding theory of multivariate aqueous solution systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference34 articles.

1. Order and oddities

2. Water: A Matrix of Life;Franks,2000

3. Water — an enduring mystery

4. H2O: A Biography of Water;Ball,2000

5. Biological water: A critique

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3