Bioinspired Mechanically Robust and Recyclable Hydrogel Microfibers Based on Hydrogen‐Bond Nanoclusters

Author:

Liang Jingye1,Xu Jishuai1,Zheng Jingxuan1,Zhou Lijuan1,Yang Weiping1,Liu Enzhao2,Zhu Yutian3,Zhou Qiang4,Liu Yong1ORCID,Wang Run1ORCID,Liu Zunfeng5

Affiliation:

1. School of Textile Science and Engineering Tiangong University 399 West Binshui Road Tianjin 300387 China

2. Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular disease Department of Cardiology Tianjin Institute of Cardiology the Second Hospital of Tianjin Medical University Tianjin 300211 China

3. College of Materials Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China

4. Department of Orthopaedics Tianjin First Central Hospital Nankai University Tianjin China

5. State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Functional Polymer Materials College of Chemistry Frontiers Science Center for New Organic Matter Nankai University 94 Weijin Road Tianjin 300071 China

Abstract

AbstractMechanically robust hydrogel fibers have demonstrated great potential in energy dissipation and shock‐absorbing applications. However, developing such materials that are recyclable, energy‐efficient, and environmentally friendly remains an enormous challenge. Herein, inspired by spider silk, a continuous and scalable method is introduced for spinning a polyacrylamide hydrogel microfiber with a hierarchical sheath‐core structure under ambient conditions. Applying pre‐stretch and twist in the as‐spun hydrogel microfibers results in a tensile strength of 525 MPa, a toughness of 385 MJ m−3, and a damping capacity of 99%, which is attributed to the reinforcement of hydrogen‐bond nanoclusters within the microfiber matrix. Moreover, it maintains both structural and mechanical stability for several days, and can be directly dissolved in water, providing a sustainable spinning dope for re‐spinning into new microfibers. This work provides a new strategy for the spinning of robust and recyclable hydrogel‐based fibrous materials.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3