Sea Cucumber‐Inspired Polyurethane Demonstrating Record‐Breaking Mechanical Properties in Room‐Temperature Self‐Healing Ionogels

Author:

Xu Fuchang1,Li Hongli1,Li Yang1ORCID

Affiliation:

1. State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China

Abstract

AbstractPractical applications of existing self‐healing ionogels are often hindered by the trade‐off between their mechanical robustness, ionic conductivity, and temperature requirements for their self‐healing ability. Herein, this challenge is addressed by drawing inspiration from sea cucumber. A polyurethane containing multiple hydrogen‐bond donors and acceptors is synthesized and used to fabricate room‐temperature self‐healing ionogels with excellent mechanical properties, high ionic conductivity, puncture resistance, and impact resistance. The hard segments of polyurethane, driven by multiple hydrogen bonds, coalesce into hard phase regions, which can efficiently dissipate energy through the reversible disruption and reformation of multiple hydrogen bonds. Consequently, the resulting ionogels exhibit record‐high tensile strength and toughness compared to other room‐temperature self‐healing ionogels. Furthermore, the inherent reversibility of multiple hydrogen bonds within the hard phase regions allows the ionogels to spontaneously and efficiently self‐heal damaged mechanical properties and ionic conductivity multiple times at room temperature. To underscore their application potential, these ionogels are employed as electrolytes in the fabrication of electrochromic devices, which exhibit excellent and stable electrochromic performance, repeatable healing ability, and satisfactory impact resistance. This study presents a novel strategy for the fabrication of ionogels with exceptional mechanical properties and room‐temperature self‐healing capability.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3