Cobalt Encapsulated in Nitrogen-Doped Graphite-like Shells as Efficient Catalyst for Selective Oxidation of Arylalkanes

Author:

Li Shuo12,Ali Shafqat3,Zuhra Zareen3,Shen Huahuai1,Qiu Jiaxiang3,Zeng Yanbin3,Zheng Ke1,Wang Xiaoxia1,Xie Guanqun3,Ding Shujiang2

Affiliation:

1. School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China

2. School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, China

3. School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China

Abstract

Selective oxidation of ethylbenzene to acetophenne is an important process in both organic synthesis and fine chemicals diligence. The cobalt-based catalysts combined with nitrogen-doped carbon have received great attention in ethylbenzene (EB) oxidation. Here, a series of cobalt catalysts with metallic cobalt nanoparticles (NPs) encapsulated in nitrogen-doped graphite-like carbon shells (Co@NC) have been constructed through the one-pot pyrolysis method in the presence of different nitrogen-containing compounds (urea, dicyandiamide and melamine), and their catalytic performance in solvent-free oxidation of EB with tert-butyl hydrogen peroxide (TBHP) as an oxidant was investigated. Under optimized conditions, the UCo@NC (urea as nitrogen source) could afford 95.2% conversion of EB and 96.0% selectivity to acetophenone, and the substrate scalability was remarkable. Kinetics show that UCo@NC contributes to EB oxidation with an apparent activation energy of 32.3 kJ/mol. The synergistic effect between metallic cobalt NPs and nitrogen-doped graphite-like carbon layers was obviously observed and, especially, the graphitic N species plays a key role during the oxidation reaction. The structure–performance relationship illustrated that EB oxidation was a free radical reaction through 1-phenylethanol as an intermediate, and the possible reaction mechanistic has been proposed.

Funder

National Natural Science Foundation of China

Dongguan Science and Technology Special Representative Project

Science Foundation for Distinguished Scholars of Dongguan University of Technology

Xi’an Jiaotong University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3