Efficient Selective Oxidation of Aromatic Alkanes by Double Cobalt Active Sites over Oxygen Vacancy‐rich Mesoporous Co3O4

Author:

Liu Yali12,Zheng Yuenan13,Feng Danyang4,Zhang Liangliang1,Zhang Ling5,Song Xiaowei1,Qiao Zhen‐An1ORCID

Affiliation:

1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun, Jilin 130012 China

2. Department of Chemical Engineering, School of Petrochemical Engineering & Environment Zhejiang Ocean University Zhoushan, Zhejiang 316022 China

3. State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, Liaoning 116081 China

4. Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Jilin 130024 China

5. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University Changchun, Jilin 130012 China

Abstract

AbstractThe development of efficient catalyst for selective oxidation of hydrocarbon to functional compounds remains a challenge. Herein, mesoporous Co3O4 (mCo3O4‐350) showed excellent catalytic activity for selective oxidation of aromatic‐alkanes, especially for oxidation of ethylbenzene with a conversion of 42 % and selectivity of 90 % for acetophenone at 120 °C. Notably, mCo3O4 presented a unique catalytic path of direct oxidation of aromatic‐alkanes to aromatic ketones rather than the conventional stepwise oxidation to alcohols and then to ketones. Density functional theory calculations revealed that oxygen vacancies in mCo3O4 activate around Co atoms, causing electronic state change from Co3+(Oh)→Co2+(Oh). Co2+(Oh) has great attraction to ethylbenzene, and weak interaction with O2, which provide insufficient O2 for gradual oxidation of phenylethanol to acetophenone. Combined with high energy barrier for forming phenylethanol, the direct oxidation path from ethylbenzene to acetophenone is kinetically favorable on mCo3O4, sharply contrasted to non‐selective oxidation of ethylbenzene on commercial Co3O4.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3