Alkali Metals Activated High Entropy Double Perovskites for Boosted Hydrogen Evolution Reaction

Author:

Sun Ning12,Lai Zhuangzhuang3,Ding Wenbo1,Li Wenbo2,Wang Tianyi1,Zheng Zhichuan1,Zhang Bowen2,Dong Xiangjiang2,Wei Peng2,Du Peng1,Hu Zhiwei4,Pao Chih‐Wen5,Huang Wei‐Hsiang5,Wang Haifeng3,Lei Ming1,Huang Kai1,Yu Runze2ORCID

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications School of Science Beijing University of Posts and Telecommunications Beijing 100876 P. R. China

2. Center for High Pressure Science and Technology Advanced Research Beijing 100193 P. R. China

3. State Key Laboratory for Green Chemistry Engineering and Industrial Catalysis Centre for Computational Chemistry and Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China

4. Max Planck Institute for Chemical Physics of Solids Nothnitzer Strasse 40 01187 Dresden Germany

5. National Synchrotron Radiation Research Center 101 Hsin‐Ann Road Hsinchu 300092 Taiwan

Abstract

AbstractAn efficient and facile water dissociation process plays a crucial role in enhancing the activity of alkaline hydrogen evolution reaction (HER). Considering the intricate influence between interfacial water and intermediates in typical catalytic systems, meticulously engineered catalysts should be developed by modulating electron configurations and optimizing surface chemical bonds. Here, a high‐entropy double perovskite (HEDP) electrocatalyst La2(Co1/6Ni1/6Mg1/6Zn1/6Na1/6Li1/6)RuO6, achieving a reduced overpotential of 40.7 mV at 10 mA cm−2 and maintaining exemplary stability over 82 h in a 1 m KOH electrolyte is reported. Advanced spectral characterization and first‐principles calculations elucidate the electron transfer from Ru to Co and Ni positions, facilitated by alkali metal‐induced super‐exchange interaction in high‐entropy crystals. This significantly optimizes hydrogen adsorption energy and lowers the water decomposition barrier. Concurrently, the super‐exchange interaction enhances orbital hybridization and narrows the bandgap, thus improving catalytic efficiency and adsorption capacity while mitigating hysteresis‐driven proton transfer. The high‐entropy framework also ensures structural stability and longevity in alkaline environments. The work provides further insights into the formation mechanisms of HEDP and offers guidelines for discovering advanced, efficient hydrogen evolution catalysts through super‐exchange interaction.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3