Selective Generation of Aldimine and Ketimine Tautomers of the Schiff Base Condensates of Amino Acids with Imidazole Aldehydes or of Imidazole Methanamines with Pyruvates—Isomeric Control with 2- vs. 4-Substituted Imidazoles

Author:

Brewer Greg1,Brewer Cynthia1,Butcher Raymond J.2ORCID,Zavalij Peter3

Affiliation:

1. Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA

2. Department of Chemistry, Howard University, Washington, DC 20059, USA

3. Department of Chemistry, University of Maryland, College Park, MD 20742, USA

Abstract

The Schiff base condensation of 5-methyl-4-imidazole carboxaldehyde, 5Me4ImCHO, and the anion of an amino acid, H2N-CH(R)CO2− (R = -CH3, -CH(CH3)2 and -CH2CH(CH3)2), gives the aldimine tautomer, Im-CH=N-CH(R)CO2−, while that of 5-methylimidazole-4-methanamine, 5MeIm-4-CH2NH2, with a 2-oxocarboxylate anion, R-C(O)-CO2−, gives the isomeric ketimine tautomer, Im-CH2-N=C(R)CO2−. All are isolated as the neutral nickel(II) complexes, NiL2, and are characterized by single crystal structure determination, IR, and positive ion ESI MS. In the cases of the 4 substituted imidazoles, either 5MeIm-4-CHO or 5MeIm-4-CH2NH2, both the aldimine and ketimine complexes are isolated cleanly with no evidence of an equilibrium between the two tautomers under the experimental conditions. The aldimines are blue while the tautomeric ketimines are green. In contrast, for the 2-substituted imidazoles, with either Im-2-CHO or Im-2-CH2NH2, the isolated product from the Schiff base condensation is the ketimine, which in the solid is green, as observed for the 4-isomer. These results suggest that for the 2-substituted imidazoles, there is a facile equilibrium between the aldimine and ketimine tautomers, and that the ketimine form is the thermodynamically favored tautomer. The aldimine tautomers of the 4-substituted imidazoles have three stereogenic centers, the nickel (Δ or Ʌ) and the two alpha carbon atoms (R or S). The observed pair of enantiomers is the ɅRR/ΔSS enantiomeric pair, suggesting that this pair is lower in energy than the others and that this is in general the preferred chiral correlation in these complexes.

Funder

NASA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3