Structural Evidence of Spin State Selection and Spin Crossover Behavior of Tripodal Schiff Base Complexes of tris(2-aminoethyl)amine and Related Tripodal Amines

Author:

Brewer Greg

Abstract

A review of the tripodal Schiff base (SB) complexes of tris(2-aminoethyl)amine, Nap(CH2CH 2NH2)3 (tren), and a few closely related tripodal amines with Cr(II), Mn(III) (d4), Mn(II), Fe(III) (d5), Fe(II) (d6), and Co(II) (d7) is provided. Attention is focused on examination of key structural features, the M-Nimine, M-Namine, or M-O and M-Nap bond distances and Nimine-M-N(O) bite and C-Nap-C angles and how these values correlate with spin state selection and spin crossover (SCO) behavior. A comparison of these experimental values with density functional theory calculated values is also given. The greatest number, 132, of complexes is observed with cationic mononuclear iron(II) in a N6 donor set, Fe(II)N6. The dominance of two spin states, high spin (HS) and low spin (LS), in these systems is indicated by the bimodal distribution of histogram plots of Fe(II)-Nimine and Fe(II)-Nazole/pyridine bond distances and of Nimine–Fe(II)-Nazole/pyridine and C-Nap-C bond angles. The values of the two maxima, corresponding to LS and HS states, in each of these histograms agree closely with the theoretical values. The iron(II)-Nimine and iron(II)-Nazole/pyridine bond distances correlate well for these complexes. Examples of SCO complexes of this type are tabulated and a few of the 20 examples are discussed that exhibit interesting features. There are only a few mononuclear iron(III) cationic complexes and one is SCO. In addition, a significant number of supramolecular complexes of these ligands that exhibit SCO, intervalence, and chiral recognition are discussed. A summary is made regarding the current state of this area of research and possible new avenues to explore based on analysis of the present data.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference87 articles.

1. Springer Spin Crossover in Transition Metal Compounds;Gutlich;Top. Curr. Chem.,2004

2. Thermal, pressure and light switchable spin-crossover materials

3. Physical Methods in Chemistry;Drago,1997

4. Structural aspects of spin crossover, examples of the [FeIILn(NCS)2] Complexes. Springer Spin Crossover in Transition Metal Compounds;Gutlich;Top. Curr. Chem.,2004

5. Structural investigation of tetrazole complexes of Fe(II). Springer Spin Crossover in Transition Metal Compounds;Gutlich;Top. Curr. Chem.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3