Novel 7-Deazapurine Incorporating Isatin Hybrid Compounds as Protein Kinase Inhibitors: Design, Synthesis, In Silico Studies, and Antiproliferative Evaluation

Author:

Alanazi Mohammed M.1ORCID,Alanazi Ashwag S.2ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

2. Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Abstract

Cancer is a multifactorial disorder with extremely complex genetics and progression. The major challenge in cancer therapy is the development of cancer resistance and relapse. Conventional anticancer drugs directly target the DNA of the cell, while modern chemotherapeutic drugs include molecular-targeted therapy, such as targeting the abnormal cell signaling inside the cancer cells. Targeted chemotherapy is effective in several malignancies; however, the success has always been limited by drug resistance and/or side effects. Anticancer with multi-targeted actions simultaneously modulates multiple cancer cell signaling pathways and, therefore, may ease the chance of effective anticancer drug development. In this research, a series of 7-deazapurine incorporating isatin hybrid compounds was designed and successfully synthesized. Among those hybrids, compound 5 demonstrated a very potent cytotoxic effect compared to the reference anticancer drug against four cancer cell lines. Likewise, compound 5 inhibited the activity of four protein kinase enzymes in nanomolar ranges. Further analysis of the biological evaluation of compound 5 revealed the capability of compound 5 to arrest cell cycle progression and induce programmed cell death. Moreover, molecular simulation studies were performed to investigate the possible types of interactions between compound 5 and the investigated protein kinases. Finally, taking into consideration all the abovementioned findings, compound 5 could be a good candidate for further investigations.

Funder

Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3