X-ray Crystal Structure, Hirshfeld Surface Analysis, DFT, and Anticancer Effect of 3-Hydroxy-6-phenyl-1,5-benzodiazepin-2-one Derivatives

Author:

Lahmidi Sanae1,Bakheit Ahmad H.2,Essassi El Mokhtar1,Mague Joel T.3ORCID,Alanazi Mohammed M.2ORCID

Affiliation:

1. Laboratory of Heterocyclic Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco

2. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Chemistry, Tulane University, New Orleans, LA 70118, USA

Abstract

This study investigated the crystallographic and electronic properties of 1,5-benzodiazepine compounds, namely: cis-(3S,4S)-3-hydroxy-7,8-dimethyl-4-phenyl-1,3,4,5-tetrahydro-1,5-benzodiazepin-2-one 3b, trans-(3R,4R)-1-ethyl-3-hydroxy-7,8-dimethyl-4-phenyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one 4, and trans-(3S,4S) 1-ethyl-3-ethoxy-7,8-dimethyl-4-phenyl-1,3,4,5-tetrahydro-1,5-benzodiazepin-2-one 5. Hirshfeld surface analysis was also applied to discern the intermolecular interactions, highlighting the significance of hydrogen bonding, van der Waals forces, and the influence of specific substituents. Furthermore, the MESP maps created using the density functional theory revealed the electrostatic nature of these molecules. The absence of dark blue regions on the MESP maps and variations due to different functional groups and substitutions were noteworthy findings. Collectively, this research offers crucial insights into the behaviour, interactions, and potential applications of new compounds. Finally, the anticancer effects of compounds 3b, 4, and 5 were evaluated against three cancer cell lines and one normal cell line, and the results showed that 3b and 4 had potent antiproliferative effects against all three cancer cell lines.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3