Author:
Das ,Horváth ,Šafranko ,Jokić ,Széchenyi ,Kőszegi
Abstract
Essential oils (EOs) are highly lipophilic, which makes the measurement of their biological action difficult in an aqueous environment. We formulated a Pickering nanoemulsion of chamomile EO (CPe). Surface-modified Stöber silica nanoparticles (20 nm) were prepared and used as a stabilizing agent of CPe. The antimicrobial activity of CPe was compared with that of emulsion stabilized with Tween 80 (CT80) and ethanolic solution (CEt). The antimicrobial effects were assessed by their minimum inhibitory concentration (MIC90) and minimum effective (MEC10) concentrations. Besides growth inhibition (CFU/mL), the metabolic activity and viability of Gram-positive and Gram-negative bacteria as well as Candida species, in addition to the generation of oxygen free radical species (ROS), were studied. We followed the killing activity of CPe and analyzed the efficiency of the EO delivery for examined formulations by using unilamellar liposomes as a cellular model. CPe showed significantly higher antibacterial and antifungal activities than CT80 and CEt. Chamomile EOs generated superoxide anion and peroxide related oxidative stress which might be the major mode of action of Ch essential oil. We could also demonstrate that CPe was the most effective in donation of the active EO components when compared with CT80 and CEt. Our data suggest that CPe formulation is useful in the fight against microbial infections.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献