ANTI-ASPERGILLUS NIGER ACTION OF BIOSYNTHESIZED SILICON DIOXIDE NANOPARTICLES ALONE OR COMBINED WITH MATRICARIA CHAMOMILLA L. EXTRACT

Author:

Baka Zakaria A. M.,El-Sharkawy Asmaa M.,El-Zahed Mohamed M.ORCID

Abstract

Fungi are the most frequent microorganisms that cause seed damage throughout development, wreaking much more post- and pre-infections and significantly reducing seed quality. Conventional antifungal agents have failed to overcome a variety of Aspergillus spp. These strains have been associated with the development of high-potency mycotoxins, which cause mould infections in fruits and vegetables as well as harmful health effects. Different species, such as Aspergillus, Penicillium, Alternaria, and Fusarium were isolated from imported yellow corn samples; however, Aspergillus spp. was the most prevalent fungus. The current work attempts to synthesize novel, effective nanomaterials that are stable and antifungal by employing efficient approaches. An extract of Matricaria chamomilla L. was used in the biosynthesis of silicon dioxide nanoparticles (SiO2 NPs) at room temperature. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta analyses were used to characterize the biosynthesized NPs. The average size of SiO2 NPs was found to be 17-28 nm. TEM images were used to confirm the biogenesis of spherical-shaped, well-dispersed SiO2 NPs. The zeta potential graph shows that SiO2 NPs have a negative potential value (-31.0 mV). The antifungal activity of M. chamomilla L. extract, SiO2 NPs, and SiO2 combined with the extract was investigated against A. niger isolate compared to miconazole. SiO2 NPs combined with M. chamomilla L. extract revealed higher antifungal activity than SiO2 NPs, M. chamomilla L. extract, and miconazole with inhibition zones of 25±0.54, 17±0.37, 20±0.61 and 13±0.23 mm, respectively. This work provides a good alternate technique that is used as an antifungal agent, M. chamomilla L. extract supplemented with SiO2 NPs, against A. niger, the pathogen for humans and crop plants.

Publisher

Slovak University of Agriculture in Nitra

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3