Novel Methods to Manipulate Autolysis in Sparkling Wine: Effects on Yeast

Author:

Gnoinski Gail B.,Schmidt Simon A.,Close Dugald C.,Goemann KarstenORCID,Pinfold Terry L.,Kerslake Fiona L.ORCID

Abstract

Sparkling wine made by the traditional method (Méthode Traditionelle) develops a distinct and desirable flavour and aroma profile attributed to proteolytic processes during prolonged ageing on lees. Microwave, ultrasound and addition of β-glucanase enzymes were applied to accelerate the disruption of Saccharomyces cerevisiae, and added to the tirage solution for secondary fermentation in traditional sparkling winemaking. Scanning electron microscopy and flow cytometry analyses were used to observe and describe yeast whole-cell anatomy, and cell integrity and structure via propidium iodide (PI) permeability after 6-, 12- and 18-months post-tirage. Treatments applied produced features on lees that were distinct from that of the untreated control yeast. Whilst control yeast displayed budding cells (growth features) with smooth, cavitated and flat external cell appearances; microwave treated yeast cells exhibited modifications like ‘doughnut’ shapes immediately after treatment (time 0). Similar ‘doughnut’-shaped and ‘pitted/porous’ cell features were observed on progressively older lees from the control. Flow cytometry was used to discriminate yeast populations; features consistent with cell disruption were observed in the microwave, ultrasound and enzyme treatments, as evidenced by up to 4-fold increase in PI signal in the microwave treatment. Forward and side scatter signals reflected changes in size and structure of yeast cells, in all treatments applied. When flow cytometry was interpreted alongside the scanning electron microscopy images, bimodal populations of yeast cells with low and high PI intensities were revealed and distinctive ‘doughnut’-shaped cell features observed in association with the microwave treatment only at tirage, that were not observed until 12 months wine ageing in older lees from the control. This work offers both a rapid approach to visualise alterations to yeast cell surfaces and a better understanding of the mechanisms of yeast lysis. Microwave, ultrasound or β-glucanase enzymes are tools that could potentially initiate the release of yeast cell compounds into wine. Further investigation into the impact of such treatments on the flavour and aroma profiles of the wines through sensory evaluation is warranted.

Funder

Wine Australia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3