Adsorption of Hexavalent Chromium Using Activated Carbon Produced from Sargassum ssp.: Comparison between Lab Experiments and Molecular Dynamics Simulations

Author:

Alvarez-Galvan YerayORCID,Minofar Babak,Futera Zdeněk,Francoeur Marckens,Jean-Marius Corine,Brehm Nicolas,Yacou Christelle,Jauregui-Haza Ulises J.ORCID,Gaspard SarraORCID

Abstract

Adsorption is one of the most successful physicochemical approaches for removing heavy metal contaminants from polluted water. The use of residual biomass for the production of adsorbents has attracted a lot of attention due to its cheap price and environmentally friendly approach. The transformation of Sargassum—an invasive brown macroalga—into activated carbon (AC) via phosphoric acid thermochemical activation was explored in an effort to increase the value of Sargassum seaweed biomass. Several techniques (nitrogen adsorption, pHPZC, Boehm titration, FTIR and XPS) were used to characterize the physicochemical properties of the activated carbons. The SAC600 3/1 was predominantly microporous and mesoporous (39.6% and 60.4%, respectively) and revealed a high specific surface area (1695 m2·g−1). To serve as a comparison element, a commercial reference activated carbon with a large specific surface area (1900 m2·g−1) was also investigated. The influence of several parameters on the adsorption capacity of AC was studied: solution pH, solution temperature, contact time and Cr(VI) concentration. The best adsorption capacities were found at very acid (pH 2) solution pH and at lower temperatures. The adsorption kinetics of SAC600 3/1 fitted well a pseudo-second-order type 1 model and the adsorption isotherm was better described by a Jovanovic-Freundlich isotherm model. Molecular dynamics (MD) simulations confirmed the experimental results and determined that hydroxyl and carboxylate groups are the most influential functional groups in the adsorption process of chromium anions. MD simulations also showed that the addition of MgCl2 to the activated carbon surface before adsorption experiments, slightly increases the adsorption of HCrO4− and CrO42− anions. Finally, this theoretical study was experimentally validated obtaining an increase of 5.6% in chromium uptake.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference92 articles.

1. The great Atlantic Sargassum belt

2. Sargassum Uses Guide: A Resource for Caribbean Researchers, Entrepreneurs and Policy Makers;Desrochers,2020

3. Adaptation and Sustainable Management of Massive Influx of Sargassum in the Caribbean;Liranzo-Gómez;Procedia Environ. Sci. Eng. Manag.,2021

4. Biosorption of nickel(II) and copper(II) ions by Sargassum sp. in nature and alginate extraction products

5. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3