Green Synthesis of Cocos nucifera-Based Nanomaterials and Mechanistic Basis of Their Antimicrobial Action

Author:

Yajeh Tanka Zuriatou1ORCID,Ankoro Naphtali Odogu2,Ngouana Vincent3,Tchinda Taghu Franklin Loïc1ORCID,Mforbesi Abongta Lum1,Nguena-Dongue Branly-Natalien1ORCID,Nsami Ndi Julius2ORCID,Pone Kamdem Boniface1ORCID,Keilah Lunga Paul1ORCID,Fekam Boyom Fabrice1ORCID

Affiliation:

1. Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon

2. Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon

3. Department of Pharmacy, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang P.O. Box 96, Cameroon

Abstract

Caused by pathogenic microorganisms, infectious diseases are known to cause high mortality rates, severe burdens of disability, and serious worldwide aftermaths. Drug-resistant pathogens have reduced the efficacy of available therapies against these diseases, thus accentuating the need to search for effective antimicrobials. Medicinal plants have served as starting material for the preparation of a number of antimicrobial agents. To this end, the present study highlights the green synthesis of Cocos nucifera-based nanomaterials and evaluation of the mechanistic basis of their antimicrobial action. Accordingly, Cocos nucifera extract was used for the reduction of silver nitrate solution to afford silver nanoparticles. These entities were further incorporated onto sulfuric-acid-based activated carbons to generate the nanocomposites. The antimicrobial activity of the as-prepared nanomaterials was evaluated using the broth microdilution method, while the antioxidant activity was assessed through standard methods. The cytotoxicity of potent nanomaterials was assessed on Vero cells by the spectrophotometric method. As a result, nanoparticles were successfully synthesized, as evidenced by the ultraviolet–visible spectroscopy analysis that revealed an intense absorption spectrum at 433 nm. Fourier Transform Infrared Spectroscopy presented the functional group moieties involved as a capping and reducing agent in the synthesis of the nanomaterials. The incubation of nanomaterials with selected bacterial and fungal strains has led to significant inhibitory effects of these pathogens with minimum inhibitory concentrations ranging from 7.813 to 250 μg/mL. In antioxidant assays, the nanocomposites presented scavenging activities comparable to those of ascorbic acid. Cytotoxicity experiment revealed no toxic effects on Vero cells (range of selectivity indices: from >4 to >128). These results provide evidence of the implication of Cocos nucifera-based nanomaterials in targeting bacterial or fungal systems that mediate free-radical damage or by inhibiting the oxidative damage caused by selected bacteria and fungi, the most susceptible being Escherichia coli and Candida albicans, respectively.

Funder

The Yaounde-Bielefeld Bilateral Graduate School for Natural Products with Anti-parasite and Antibacterial Activity

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3