Discovery of Novel c-Jun N-Terminal Kinase 1 Inhibitors from Natural Products: Integrating Artificial Intelligence with Structure-Based Virtual Screening and Biological Evaluation

Author:

Yang RuoqiORCID,Zhao Guiping,Yan Bin

Abstract

c-Jun N-terminal kinase 1 (JNK1) is currently considered a critical therapeutic target for type-2 diabetes. In recent years, there has been a great interest in naturopathic molecules, and the discovery of active ingredients from natural products for specific targets has received increasing attention. Based on the above background, this research aims to combine emerging Artificial Intelligence technologies with traditional Computer-Aided Drug Design methods to find natural products with JNK1 inhibitory activity. First, we constructed three machine learning models (Support Vector Machine, Random Forest, and Artificial Neural Network) and performed model fusion based on Voting and Stacking strategies. The integrated models with better performance (AUC of 0.906 and 0.908, respectively) were then employed for the virtual screening of 4112 natural products in the ZINC database. After further drug-likeness filtering, we calculated the binding free energy of 22 screened compounds using molecular docking and performed a consensus analysis of the two methodologies. Subsequently, we identified the three most promising candidates (Lariciresinol, Tricin, and 4′-Demethylepipodophyllotoxin) according to the obtained probability values and relevant reports, while their binding characteristics were preliminarily explored by molecular dynamics simulations. Finally, we performed in vitro biological validation of these three compounds, and the results showed that Tricin exhibited an acceptable inhibitory activity against JNK1 (IC50 = 17.68 μM). This natural product can be used as a template molecule for the design of novel JNK1 inhibitors.

Funder

Sub-project of the National Ministry of Health Major New Drug Creation Science and Technology Major Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3