The Characterization and Study of Antibacterial, Free Radical Scavenging, and Anticancer Potential of Livistona chinensis-Mediated Silver Nanoparticles

Author:

Saleem Aroona1ORCID,Ali Sikander1ORCID,Aftab Muhammad Nauman1,Shami Ashwag2ORCID,Al-Saeed Fatimah A.3ORCID,Mustafa Bilal4,Paray Bilal Ahamad5

Affiliation:

1. Institute of Industrial Biotechnology (IIB), Government College University Lahore, Lahore 54000, Pakistan

2. Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

3. Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia

4. Wildlife Conservation Research Unit (WildCRU), Department of Biology, University of Oxford, Oxford OX13 5QL, UK

5. Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

In the present research, Livistona chinensis leaf extracts were utilized as reductants to bio-fabricate silver nanoparticles (LC-AgNPs) and this was followed by the evaluation of their antioxidant, antibacterial, and anticancer potential. Multiple parameters were optimized for the formation and fidelity of LC-AgNPs. The color shift of the reaction mixture from yellow to dark brown confirmed the LC-AgNPs formation. UV/VIS spectroscopy exhibited a surface plasmon resonance (SPR) band at 436 nm. The Fourier transform infrared (FTIR) spectroscopy spectrum depicted phytochemicals in the plant extract acting as bio-reducers for LC-AgNPs synthesis. The XRD pattern confirmed the presence of LC-AgNPs by showing peaks corresponding to 2θ angle at 8.24° (111), 38.16° (200), 44.20° (220), and 64.72° (311). Zetasizer analysis exhibited size distribution by intensity of LC-AgNPs with a mean value of 255.7 d. nm. Moreover, the zeta potential indicated that the AgNPs synthesized were stable. The irregular shape of LC-AgNPs with a mean average of 38.46 ± 0.26 nm was found by scanning electron microscopy. Furthermore, the antioxidant potential of LC-AgNPs was examined using a DPPH assay and was calculated to be higher in LC-AgNPs than in leaf extracts. The calculated IC50 values of the LC-AgNPs and plant extract are 85.01 ± 0.17 and 209.44 ± 0.24, respectively. The antibacterial activity of LC-AgNPs was investigated against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis as well as Staphylococcus aureus, and maximum potential was observed after 24 h against P. aeruginosa. Moreover, LC-AgNPs exhibited maximum anticancer potential against TPC1 cell lines compared to the plant extract. The findings suggested that LC-AgNPs could be used as antioxidant, antibacterial, and anticancer agents for the cure of free-radical-oriented bacterial and oncogenic diseases.

Funder

Princess Nourah bint Abdulrahman University Researchers

King Khalid University

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3