Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines

Author:

Selvarathinam KanithaORCID,Subramani Prabhu,Thekkumalai Malarvili,Vilwanathan Ravikumar,Selvarajan RamganeshORCID,Abia Akebe Luther KingORCID

Abstract

Despite progress in breast cancer treatment, the survival rate for patients with metastatic breast cancer remains low due to chemotherapeutic agent resistance and the lack of specificity of the current generation of cancer drugs. Our previous findings indicated that the antimicrobial peptide SKACP003 exhibited anticancer properties, particularly against the MCF-7, MDA-MB-231, and MDA-MB-453 breast cancer cell lines. However, the mechanism of SKACP003-induced cancer cell death is unknown. Here, we investigated the molecular mechanism by which SKACP003 inhibits the cell cycle, cell proliferation, and angiogenesis in breast cancer cell lines. The results revealed that all the breast cancer cell lines treated at their IC50 values significantly inhibited the replicative phase of the cell cycle. The SKACP003-induced growth inhibition induced apoptosis, as evidenced by a decrease in BCL-2 and an increase in BAX and caspase gene (Cas-3, Cas-8, and Cas-9) expression. Reduced expression of the β-Catenin signaling pathway was associated with the SKACP003-induced apoptosis. SKACP003-treated breast cancer cells showed decreased expression of Wnt/β-Catenin targeting genes such as C-Myc, P68, and COX-2 and significant downregulation of CDK-4 and CDK-6 genes. Furthermore, cytoplasmic β-catenin protein levels in SKACP003-treated cell lines were significantly lower than in control cell lines. The results of the current study suggest that the newly identified antimicrobial peptide SKACP003 has great potential as a candidate for specifically targeting the β-catenin and thus significantly reducing the progression and prognosis of breast cancer cell lines.

Funder

University of South Africa

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference64 articles.

1. Epidemiology of Breast Cancer in Indian Women;Malvia;Asia Pac. J. Clin. Oncol.,2017

2. Oncolytic Activities of Host Defense Peptides;Shai;Int. J. Mol. Sci.,2011

3. Membrane-Active Host Defense Peptides–Challenges and Perspectives for the Development of Novel Anticancer Drugs;Riedl;Chem. Phys. Lipids,2011

4. On the Selectivity and Efficacy of Defense Peptides with Respect to Cancer Cells;Harris;Med. Res. Rev.,2013

5. Overview of Tumor Cell Chemoresistance Mechanisms;Gatti;Methods Mol Med.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3