Preliminary Structural Characterization of Selenium Nanoparticle Composites Modified by Astragalus Polysaccharide and the Cytotoxicity Mechanism on Liver Cancer Cells

Author:

Ji Haiyu1ORCID,Lou Xiaowei1,Jiao Jianshuang2,Li Yang1,Dai Keyao2,Jia Xiaoyu3

Affiliation:

1. Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China

2. College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China

3. Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Key Laboratory of Storage of Agricultural Products, National Engineering Technology Research Center for Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300384, China

Abstract

Astragalus alcohol soluble polysaccharide (AASP) could present superior water solubility and antitumor activity with high concentration. Selenium nanoparticles (SeNPs) have received growing attention in various fields, but their unstable property increases the application difficulties. In the present study, functionalized nano-composites (AASP−SeNPs) were synthesized through SeNPs using AASP (average molecular weight of 2.1 × 103 Da) as a surface modifier, and the preliminary structural characteristics and inhibitory mechanism on liver cancer (HepG2) cells were investigated. Results showed that AASP−SeNPs prepared under a sodium selenite/AASP mass ratio of 1/20 (w/w) were uniformly spherical with a mean grain size of 49.80 nm and exhibited superior dispersivity and stability in water solution. Moreover, the composites could dose-dependently inhibit HepG2 cell proliferation and induce apoptosis through effectively regulating mitochondria-relevant indicators including ΔΨm depletion stimulation, intracellular ROS accumulation, Bax/Bcl-2 ratio improvement, and Cytochrome c liberation promotion. These results provide scientific references for future applications in functional food and drug industries.

Funder

Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3