Plasmonic Near-Infrared Photoconductor Based on Hot Hole Collection in the Metal-Semiconductor-Metal Junction

Author:

Sun Zhiwei,Zhong Yongsheng,Dong Yajin,Zheng Qilin,Nan Xianghong,Liu ZhongORCID,Wen LongORCID,Chen Qin

Abstract

Harvesting energetic carriers from plasmonic resonance has been a hot topic in the field of photodetection in the last decade. By interfacing a plasmonic metal with a semiconductor, the photoelectric conversion mechanism, based on hot carrier emission, is capable of overcoming the band gap limitation imposed by the band-to-band transition of the semiconductor. To date, most of the existing studies focus on plasmonic structural engineering in a single metal-semiconductor (MS) junction system and their responsivities are still quite low in comparison to conventional semiconductor, material-based photodetection platforms. Herein, we propose a new architecture of metal-semiconductor-metal (MSM) junctions on a silicon platform to achieve efficient hot hole collection at infrared wavelengths with a photoconductance gain mechanism. The coplanar interdigitated MSM electrode’s configuration forms a back-to-back Schottky diode and acts simultaneously as the plasmonic absorber/emitter, relying on the hot-spots enriched on the random Au/Si nanoholes structure. The hot hole-mediated photoelectric response was extended far beyond the cut-off wavelength of the silicon. The proposed MSM device with an interdigitated electrode design yields a very high photoconductive gain, leading to a photocurrent responsivity up to several A/W, which is found to be at least 1000 times higher than that of the existing hot carrier based photodetection strategies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Science and Technology Program International Cooperation Program

Guangdong Basic and Applied Basic Research Foundation

Pearl River Talent Plan Program of Guangdong

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3