Abstract
Harvesting energetic carriers from plasmonic resonance has been a hot topic in the field of photodetection in the last decade. By interfacing a plasmonic metal with a semiconductor, the photoelectric conversion mechanism, based on hot carrier emission, is capable of overcoming the band gap limitation imposed by the band-to-band transition of the semiconductor. To date, most of the existing studies focus on plasmonic structural engineering in a single metal-semiconductor (MS) junction system and their responsivities are still quite low in comparison to conventional semiconductor, material-based photodetection platforms. Herein, we propose a new architecture of metal-semiconductor-metal (MSM) junctions on a silicon platform to achieve efficient hot hole collection at infrared wavelengths with a photoconductance gain mechanism. The coplanar interdigitated MSM electrode’s configuration forms a back-to-back Schottky diode and acts simultaneously as the plasmonic absorber/emitter, relying on the hot-spots enriched on the random Au/Si nanoholes structure. The hot hole-mediated photoelectric response was extended far beyond the cut-off wavelength of the silicon. The proposed MSM device with an interdigitated electrode design yields a very high photoconductive gain, leading to a photocurrent responsivity up to several A/W, which is found to be at least 1000 times higher than that of the existing hot carrier based photodetection strategies.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Guangdong Science and Technology Program International Cooperation Program
Guangdong Basic and Applied Basic Research Foundation
Pearl River Talent Plan Program of Guangdong
Fundamental Research Funds for the Central Universities
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献