Study on the Relationship between Particulate Methane Monooxygenase and Methanobactin on Gold-Nanoparticles-Modified Electrodes

Author:

Dou Boxin1ORCID,Li Mingyu1,Sun Lirui1,Xin Jiaying12,Xia Chungu2

Affiliation:

1. College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges, Harbin 150000, China

2. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

(1) Background: Particulate methane monooxygenase (pMMO) has a strong dependence on the natural electron transfer path and is prone to denaturation, which results in its redox activity centers being unable to transfer electrons with bare electrodes directly and making it challenging to observe an electrochemical response; (2) Methods: Using methanobactin (Mb) as the electron transporter between gold electrodes and pMMO, a bionic interface with high biocompatibility and stability was created. The Mb-AuNPs-modified functionalized gold net electrode as a working electrode, the kinetic behaviors of pMMO bioelectrocatalysis, and the effect of Mb on pMMO were analyzed. The CV tests were performed at different scanning rates to obtain electrochemical kinetics parameters. (3) Results: The values of the electron transfer coefficient (α) and electron transfer rate constant (ks) are relatively large in test environments containing only CH4 or O2. In contrast, in the test environment containing both CH4 and O2, the bioelectrocatalysis of pMMO is a two-electron transfer process with a relatively small α and ks; (4) Conclusions: It was inferred that Mb formed the complex with pMMO. More importantly, Mb not only played a role in electron transfer but also in stabilizing the enzyme structure of pMMO and maintaining a specific redox state. Furthermore, the continuous catalytic oxidation of natural substrate methane was realized.

Funder

Heilongjiang Science and Technology Major Special Project

Heilongjiang Province Education Department project

Heilongjiang Natural Science Foundation project

2023 “Young Scientific Research and Innovative Talents” cultivation plan of Harbin University of Commerce

Harbin Commercial Dawei PhD Scientific Research Support Pla

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3