Abstract
Self-assembly of organic molecules in aqueous solutions is governed by a delicate entropy/enthalpy balance. Even small changes in their intermolecular interactions can cause critical changes in the structure of the aggregates and their spectral properties. The experimental results reported here demonstrate that protonated cations of acridine orange, acridine, and acridin-9-amine form stable J-heteroaggregates when in water. The structures of these aggregates are justified by the homonuclear 1H cross-relaxation nuclear magnetic resonance (NMR). The absorption and fluorescence of these aggregates deviate characteristically from the known H-homoaggregates of the protonated cations of acridine orange. The latter makes acridine orange a handy optical sensor for soft matter studies.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献