Zinc Oxide Nanoparticles Blunt Potassium-Bromate-Induced Renal Toxicity by Reinforcing the Redox System

Author:

Alhazza Ibrahim M.1ORCID,Hassan Iftekhar1ORCID,Ebaid Hossam1,Al-Tamimi Jameel1,Hasan Zafrul2

Affiliation:

1. Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

2. College of Nursing, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Potassium bromate (PB) is a general food additive, a significant by-product during water disinfection, and a carcinogen (Class II B). The compound emits toxicity depending on the extent of its exposure and dose through consumable items. The current study targeted disclosing the ameliorative efficacy of zinc oxide nanoparticles (ZnO NPs) prepared by green technology in PB-exposed Swiss albino rats. The rats were separated into six treatment groups: control without any treatment (Group I), PB alone (Group II), ZnO alone (Group III), ZnO NP alone (Group IV), PB + ZnO (Group V), and PB + ZnO NPs (Group VI). The blood and kidney samples were retrieved from the animals after following the treatment plan and kept at −20 °C until further analysis. Contrary to the control (Group I), PB-treated rats (Group II) exhibited a prominent trend in alteration in the established kidney function markers and disturbed redox status. Further, the analysis of the tissue and nuclear DNA also reinforced the biochemical results of the same treatment group. Hitherto, Groups III and IV also showed moderate toxic insults. However, Group VI showed a significant improvement from the PB-induced toxic insults compared to Group II. Hence, the present study revealed the significant therapeutic potential of the NPs against PB-induced nephrotoxicity in vivo, pleading for their usage in medicines having nephrotoxicity as a side effect or in enhancing the safety of the industrial use of PB.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3