Process Optimization of Phytoantioxidant and Photoprotective Compounds from Carob Pods (Ceratonia siliqua L.) Using Ultrasonic Assisted Extraction Method

Author:

Ayad RadiaORCID,Ayad RimaORCID,Bourekoua Hayat,Lefahal Mostefa,Makhloufi El Hani,Akkal SalahORCID,Medjroubi Kamel,Nieto GemaORCID

Abstract

The current study first describes the extraction of phytoantioxidant polyphenols from Carob byproducts (pods) using maceration and heating-assisted extraction as traditional methods and ultrasonic-assisted extraction (UAE) as an innovative method to determine the most efficient extraction process in terms of four targeted responses: total phenolic content (TPC), antioxidant activities (TAC and DPPH), and photoprotective properties as measured by the sun protection factor (SPF). Second, we used response surface methodology (RSM) with a central composite rotatable design (CCDR) approach to investigate the influence of process variables (extraction time, extraction temperature, and solvent concentration) on UAE, which was found to be the most effective extraction technique in our study. Carob byproduct extracts had a TPC ranging from 6.21 to 21.92 mg GAE/g dw, a TAC ranging from 22.00 to 49.30 mg AAE/g dw, DPPH scavenging activity ranging from 56.35 to 90.50%, and SPF values ranging from 8.62 to 22.37. The optimal UAE conditions for maximum TPC, TAC, DPPH, and SPF responses were determined to be 38.90% ethanol, 53.90 °C, and 50.92 min. Using Carob as a source for sustainable and bioactive products in conjunction with optimized UAE is a promising contribution to the cosmetic industry that will help to strengthen the concept of environmentally-friendly “green chemistry”. Given that Carob pulp or seeds are considered food byproducts, the research presented here encourages the use of these agri-food waste materials in cosmetics.

Funder

Ministry of Higher Education and Scientific Research of Algeria

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3