Abstract
Four pesticides with a high detection rate in Pu’er tea have been determined by a QuEChERS (quick, easy, cheap, effective, rugged, safe) method with multiwalled carbon nanotubes (MWCNTs), and combined ultrahigh-performance liquid chromatography–triple quadrupole linear ion trap-tandem mass spectrometry (UHPLC-QTRAP-MS/MS). MWCNs have been compared with other common purification materials, and found to be superior. The matrix effect was systematically studied, and the results show that the MWCNs can quickly and effectively reduce matrix interference values, which were in the range from −17.8 to 13.8. The coefficients (R2) were greater than 0.99, with the limit of quantification ranging from 0.1 to 0.5 μg/kg, and the recovery rate ranging from 74.8% to 105.0%, while the relative standard deviation (RSD) ranged from 3.9% to 6.6%. A total of 300 samples, taken from three areas in which Yunnan Pu’er tea was most commonly produced, tested for four pesticides. The results show that the detection rate of tolfenpyrad in Pu’er tea was 35.7%, which is higher than other pesticides, and the lowest was indoxacarb, with 5.2%. The residual concentrations of chlorpyrifos, triazophos, tolfenpyrad and indoxacarb ranged from 1.10 to 5.28, 0.014 to 0.103, 1.02 to 51.8, and 1.07 to 4.89 mg/kg, respectively. By comparing with China’s pesticide residue limits in tea (GB 2763-2021), the over standard rates of chlorpyrifos, tolfenpyrad, and indoxacarb were 4.35%, 0.87% and 0%, respectively. The risk assessment result obtained with the hazard quotient (HQ) method shows that the HQ of the four pesticides was far less than one, indicating that the risk is considered acceptable for the four pesticides in Pu’er tea. The largest HQ was found for tolfenpyrad, 0.0135, and the smallest was found for indoxacarb, 0.000757, but more attention should be paid to tolfenpyrad in daily diets in the future, because its detection rate, and residual and residual median were all relatively high.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献