Improved Principal Component Analysis (IPCA): A Novel Method for Quantitative Calibration Transfer between Different Near-Infrared Spectrometers

Author:

Zhang Hui,Tan Haining,Lin Boran,Yang Xiangchun,Sun Zhongyu,Zhong Liang,Gao Lele,Li Lian,Dong QinORCID,Nie Lei,Zang Hengchang

Abstract

Given the labor-consuming nature of model establishment, model transfer has become a considerable topic in the study of near-infrared (NIR) spectroscopy. Recently, many new algorithms have been proposed for the model transfer of spectra collected by the same types of instruments under different situations. However, in a practical scenario, we need to deal with model transfer between different types of instruments. To expand model applicability, we must develop a method that could transfer spectra acquired from different types of NIR spectrometers with different wavenumbers or absorbance. Therefore, in our study, we propose a new methodology based on improved principal component analysis (IPCA) for calibration transfer between different types of spectrometers. We adopted three datasets for method evaluation, including public pharmaceutical tablets (dataset 1), corn data (dataset 2), and the spectra of eight batches of samples acquired from the plasma ethanol precipitation process collected by FT-NIR and MicroNIR spectrometers (dataset 3). In the calibration transfer for public datasets, IPCA displayed comparable results with the classical calibration transfer method using piecewise direct standardization (PDS), indicating its obvious ability to transfer spectra collected from the same types of instruments. However, in the calibration transfer for dataset 3, our proposed IPCA method achieved a successful bi-transfer between the spectra acquired from the benchtop and micro-instruments with/without wavelength region selection. Furthermore, our proposed method enabled improvements in prediction ability rather than the degradation of the models built with original micro spectra. Therefore, our proposed method has no limitations on the spectrum for model transfer between different types of NIR instruments, thus allowing a wide application range, which could provide a supporting technology for the practical application of NIR spectroscopy.

Funder

National Key Research and Development Program of China

Shandong Province Natural Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3