Abstract
Fungi and bacteria cause disease issues in cultivated plants world-wide. In most cases, the fungi and bacteria colonize plant tissues as biofilms, which can be very challenging to destroy or eradicate. In this experiment, we employed a novel (biofilm) approach to crop disease management by evaluating the efficacies of six fungicides, and four silver-based compounds, versus biofilms formed by fungi and bacteria, respectively. The aim was to identify combinations of fungicides and metallic cations that showed potential to improve the control of white mold (WM), caused by the ascomycete fungus Sclerotinia sclerotiorum, and to evaluate novel high valency silver compounds as seed coatings to prevent biofilm formation of four bacterial blight pathogens on dry bean seeds. Our results confirmed that mature fungal biofilms were recalcitrant to inactivation by fungicides. When metallic cations were added to the fungicides, their efficacies were improved. Some improvements were statistically significant, with one combination (fluazinam + Cu2+) showing a synergistic effect. Additionally, coatings with silver compounds could reduce bacterial blight biofilms on dry bean seeds and oxysilver nitrate was the most potent inhibitor of bacterial blight.
Funder
Alberta Canola Producer Commission, Western Grains Research Foundation, Alberta Crop Industry Development Fund
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献