Comparison of Multivariate Regression Models Based on Water- and Carbohydrate-Related Spectral Regions in the Near-Infrared for Aqueous Solutions of Glucose

Author:

Beganović Anel,Moll Vanessa,Huck Christian W.ORCID

Abstract

The predictive power of the two major water bands centered at 6900 cm - 1 and 5200 cm - 1 in the near-infrared (NIR) region was compared to carbohydrate-related spectral areas located in the first overtone (around 6000 cm - 1 ) and combination (around 4500 cm - 1 ) region using glucose in aqueous solutions as a model substance. For the purpose of optimal coverage of stronger as well as weaker absorbing NIR regions, cells with three different declared optical pathlengths were employed. The sample set consisted of multiple separately prepared batches in the range of 50–200 mmol/L. Moreover, the samples were divided into a calibration set for the construction of the partial least squares regression (PLS-R) models and a test set for the validation process with independent samples. The first overtone and combination region showed relative prediction errors between 0.4–1.6% with only one PLS-R factor required. On the other hand, the errors for the water bands were found between 1.6–8.3% and up to three PLS-R factors required. The best PLS-R models resulted from the cell with 1 mm optical pathlength. In general, the results suggested that the carbohydrate-related regions in the first overtone and combination region should be preferred over the regions of the two dominant water bands.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference39 articles.

1. Evaluation of the hexokinase/glucose-6-phosphate dehydrogenase method of determination of glucose in urine

2. Simple automated determination of serum or plasma glucose by a hexokinase/glucose-6- phosphate dehydrogenase method;Neeley;Clin. Chem.,1972

3. Food Analysis,2010

4. Near-Infrared Spectroscopy: Principles, Instruments, Applications,2002

5. Near-Infrared Spectroscopy in Food Science and Technology,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3