Seeking the structure of water from the combination of bending and stretching vibrations in near infrared spectra

Author:

Han Li1ORCID,Sun Yan1,Cai Wensheng1,Shao Xueguang1ORCID

Affiliation:

1. Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China

Abstract

Near infrared (NIR) spectroscopy has been used to analyze water structures due to the strong absorption of NIR energy by water. The spectral band around 6900 cm−1, corresponding to the first overtone of the OH stretching vibration, is generally studied because the OH in the water molecule with different numbers of hydrogen bonds can be distinguished. In this work, the spectral band around 8600 cm−1, corresponding to the combination of HOH bending and stretching vibration, ν123, was studied to extract spectral information about water structures. Continuous wavelet transform was used to enhance the resolution of the spectra. Seven peaks related to the possible molecular structures of water with different numbers of hydrogen bonds were identified based on the spectral changes with temperature. The identification was validated by varying the spectral peaks with molar ratio of H2O–D2O in mixtures and the effect of hydration around the cations on the structure of water. NIR spectroscopy is therefore proven to be a powerful technique for identifying water structures with different hydrogen bonds.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3