3D-QSAR and Molecular Dynamics Study of Isoxazole Derivatives to Identify the Structural Requirements for Farnesoid X Receptor (FXR) Agonists

Author:

Yan Dan12ORCID,Yang Yueying1,Shen Hanxiao1,Liu Zhen3ORCID,Yao Kun4,Liu Qing12

Affiliation:

1. Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China

2. Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China

3. School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

4. State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China

Abstract

The farnesoid X receptor (FXR) has been recognized as a potential drug target for the treatment of non-alcoholic fatty liver disease (NAFLD). FXR agonists benefit NAFLD by modulating bile acid synthesis and transport, lipid metabolism, inflammation, and fibrosis pathways. However, there are still great challenges involved in developing safe and effective FXR agonists. To investigate the critical factors contributing to their activity on the FXR, 3D-QSAR molecular modeling was applied to a series of isoxazole derivatives, using comparative molecular field analysis (CoMFA (q2 = 0.664, r2 = 0.960, r2pred = 0.872)) and comparative molecular similarity indices analysis (CoMSIA (q2 = 0.706, r2 = 0.969, r2pred = 0.866)) models, which demonstrated strong predictive ability in our study. The contour maps generated from molecular modeling showed that the presence of hydrophobicity at the R2 group and electronegativity group at the R3 group in these compounds is crucial to their agonistic activity. A molecular dynamics (MD) simulation was carried out to further understand the binding modes and interactions between the FXR and its agonists in preclinical or clinical studies. The conformational motions of loops L: H1/H2 and L: H5/H6 in FXR–ligand binding domain (LBD) were crucial to the protein stability and agonistic activity of ligands. Hydrophobic interactions were formed between residues (such as LEU287, MET290, ALA291, HIS294, and VAL297) in helix H3 and ligands. In particular, our study found that residue ARG331 participated in salt bridges, and HIS447 participated in salt bridges and hydrogen bonds with ligands; these interactions were significant to protein–ligand binding. Eight new potent FXR agonists were designed according to our results, and their activities were predicted to be better than that of the first synthetic FXR agonist, GW4064.

Funder

Natural Science Foundation of Hubei Province

the Hubei Province Key Laboratory of Occupational Hazard Identification and Control

Wuhan University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3