Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review

Author:

Tian Quanzhi,Bai Yingchu,Pan Yinhai,Chen Changshuai,Yao Shuo,Sasaki KeikoORCID,Zhang Haijun

Abstract

Geopolymers, as a kind of inorganic polymer, possess excellent properties and have been broadly studied for the stabilization/solidification (S/S) of hazardous pollutants. Even though many reviews about geopolymers have been published, the summary of geopolymer-based S/S for various contaminants has not been well conducted. Therefore, the S/S of hazardous pollutants using geopolymers are comprehensively summarized in this review. Geopolymer-based S/S of typical cations, including Pb, Zn, Cd, Cs, Cu, Sr, Ni, etc., were involved and elucidated. The S/S mechanisms for cationic heavy metals were concluded, mainly including physical encapsulation, sorption, precipitation, and bonding with a silicate structure. In addition, compared to cationic ions, geopolymers have a poor immobilization ability on anions due to the repulsive effect between them, presenting a high leaching percentage. However, some anions, such as Se or As oxyanions, have been proved to exist in geopolymers through electrostatic interaction, which provides a direction to enhance the geopolymer-based S/S for anions. Besides, few reports about geopolymer-based S/S of organic pollutants have been published. Furthermore, the adsorbents of geopolymer-based composites designed and studied for the removal of hazardous pollutants from aqueous conditions are also briefly discussed. On the whole, this review will offer insights into geopolymer-based S/S technology. Furthermore, the challenges to geopolymer-based S/S technology outlined in this work are expected to be of direct relevance to the focus of future research.

Funder

National Natural Science Foundation of China

Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3