Metakaolin-Based Geopolymers Filled with Industrial Wastes: Improvement of Physicochemical Properties through Sustainable Waste Recycling

Author:

Viola Veronica1ORCID,D’Angelo Antonio1ORCID,Vertuccio Luigi1,Catauro Michelina1ORCID

Affiliation:

1. Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy

Abstract

The increasing global demand for cement significantly impacts greenhouse gas emissions and resource consumption, necessitating sustainable alternatives. This study investigates fresh geopolymer (GP) pastes incorporating 20 wt.% of five industrial wastes—suction dust, red mud from alumina production, electro-filter dust, and extraction sludges from food supplement production and from partially stabilized industrial waste—as potential replacements for traditional cement. Consistent synthesis methods are used to prepare the geopolymers, which are characterized for their physicochemical, mechanical, and biological properties. Ionic conductivity and pH measurements together with integrity tests, thermogravimetry analysis (TGA), and leaching analysis are used to confirm the stability of the synthesized geopolymers. Fourier-transform Infrared (FT-IR) spectroscopy is used to follow geopolymerization occurrences. Results for ionic conductivity, pH, and integrity revealed that the synthesized GPs were macroscopically stable. TGA revealed that the main mass losses were ascribable to water dehydration and to water entrapped in the geopolymer networks. Only the GP filled with the powder of the red mud coming from alumina production experienced a mass loss of 23% due to a partial waste degradation. FT-IR showed a red shift in the main Si-O-(Si or Al) absorption band, indicating successful geopolymer network formations. Additionally, most of the GPs filled with the wastes exhibited higher compressive strength (37.8–58.5 MPa) compared to the control (22 MPa). Only the GP filled with the partially stabilized industrial waste had a lower mechanical strength as its structure was highly porous because of gas formation during geopolymerization reactions. Despite the high compressive strength (58.5 MPa) of the GP filled with suction dust waste, the concentration of Sb leached was 25 ppm, which limits its use. Eventually, all samples also demonstrated effective antimicrobial activity against Escherichia coli and Staphylococcus aureus due to the alkaline environment and the presence of metal cations able to react with the bacterial membranes. The findings revealed the possibility of recycling these wastes within several application fields.

Publisher

MDPI AG

Reference90 articles.

1. Techno-Socio-Economic Aspects of Portland Cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) Composite Systems: A-State-of-Art-Review;Kanagaraj;Constr. Build. Mater.,2023

2. Durability of Geopolymers with Industrial Waste;Marvila;Case Stud. Constr. Mater.,2022

3. Infrastructure Development and Economic Growth: Prospects and Perspective;Srinivasu;J. Bus. Manag.,2013

4. European Commission (2019). Towards a Sustainable Europe by 2030, European Commission.

5. Geopolymers as an Alternative to Portland Cement: An Overview;Singh;Constr. Build. Mater.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3