Polymeric Forms of Plant Flavonoids Obtained by Enzymatic Reactions

Author:

Latos-Brozio MalgorzataORCID,Masek AnnaORCID,Piotrowska MałgorzataORCID

Abstract

Naringenin is one of the flavonoids originating from citrus fruit. This polyphenol is mainly found in grapefruit, orange and lemon. The antioxidant and antimicrobial properties of flavonoids depend on their structure, including the polymeric form. The aim of this research was to achieve enzymatic polymerization of naringenin and to study the properties of poly(naringenin). The polymerization was performed by methods using two different enzymes, i.e., laccase and horseradish peroxidase (HRP). According to the literature data, naringenin had not been polymerized previously using the enzymatic polymerization method. Therefore, obtaining polymeric naringenin by reaction with enzymes is a scientific novelty. The research methodology included analysis of the structure of poly(naringenin) by NMR, GPC, FTIR and UV-Vis and its morphology by SEM, as well as analysis of its properties, i.e., thermal stability (DSC and TGA), antioxidant activity (ABTS, DPPH, FRAP and CUPRAC) and antimicrobial properties. Naringenin oligomers were obtained as a result of polymerization with two types of enzymes. The polymeric forms of naringenin were more resistant to thermo-oxidation; the final oxidation temperature To of naringenin catalyzed by laccase (poly(naringenin)-laccase) was 28.2 °C higher, and poly(naringenin)-HRP 23.6 °C higher than that of the basic flavonoid. Additionally, due to the higher molar mass and associated increase in OH groups in the structure, naringenin catalyzed by laccase (poly(naringenin)-laccase) showed better activity for scavenging ABTS+• radicals than naringenin catalyzed by HRP (poly(naringenin)-HRP) and naringenin. In addition, poly(naringenin)-laccase at a concentration of 5 mg/mL exhibited better microbial activity against E. coli than monomeric naringenin.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3