Pulse Duration Dependent Asymmetry in Molecular Transmembrane Transport Due to Electroporation in H9c2 Rat Cardiac Myoblast Cells In Vitro

Author:

Batista Napotnik Tina,Miklavčič DamijanORCID

Abstract

Electroporation (EP) is one of the successful physical methods for intracellular drug delivery, which temporarily permeabilizes plasma membrane by exposing cells to electric pulses. Orientation of cells in electric field is important for electroporation and, consequently, for transport of molecules through permeabilized plasma membrane. Uptake of molecules after electroporation are the greatest at poles of cells facing electrodes and is often asymmetrical. However, asymmetry reported was inconsistent and inconclusive—in different reports it was either preferentially anodal or cathodal. We investigated the asymmetry of polar uptake of calcium ions after electroporation with electric pulses of different durations, as the orientation of elongated cells affects electroporation to a different extent when using electric pulses of different durations in the range of 100 ns to 100 µs. The results show that with 1, 10, and 100 µs pulses, the uptake of calcium ions is greater at the pole closer to the cathode than at the pole closer to the anode. With shorter 100 ns pulses, the asymmetry is not observed. A different extent of electroporation at different parts of elongated cells, such as muscle or cardiac cells, may have an impact on electroporation-based treatments such as drug delivery, pulse-field ablation, and gene electrotransfection.

Funder

Slovenian Research Agency

Medtronic

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3