Effect of H2O on the Pressure-Induced Amorphization of Hydrated AlPO4-17

Author:

Alabarse Frederico G.,Joseph BobyORCID,Lausi Andrea,Haines JulienORCID

Abstract

The incorporation of guest species in zeolites has been found to strongly modify their mechanical behavior and their stability with respect to amorphization at high pressure (HP). Here we report the strong effect of H2O on the pressure-induced amorphization (PIA) in hydrated AlPO4-17. The material was investigated in-situ at HP by synchrotron X-ray powder diffraction in diamond anvil cells by using non- and penetrating pressure transmitting media (PTM), respectively, silicone oil and H2O. Surprisingly, in non-penetrating PTM, its structural response to pressure was similar to its anhydrous phase at lower pressures up to ~1.4 GPa, when the amorphization was observed to start. Compression of the structure of AlPO4-17 is reduced by an order of magnitude when the material is compressed in H2O, in which amorphization begins in a similar pressure range as in non-penetrating PTM. The complete and irreversible amorphization was observed at ~9.0 and ~18.7 GPa, respectively, in non- and penetrating PTM. The present results show that the insertion of guest species can be used to strongly modify the stability of microporous material with respect to PIA, by up to an order of magnitude.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3