Salicylic Acid Stimulates Defense Systems in Allium hirtifolium Grown under Water Deficit Stress

Author:

Yousefvand Peyman,Sohrabi Yousef,Heidari GholamrezaORCID,Weisany Weria,Mastinu AndreaORCID

Abstract

Nowadays, the use of the growth regulator salicylic acid for improving a plant’s resistance to environmental stresses such as drought is increasing. The present study investigated the effect of salicylic acid on the physiological traits, antioxidant enzymes, yield, and quality of Allium hirtifolium (shallots) under drought conditions for three years (2016–2017, 2017–2018, and 2018–2019). The experiment was conducted as a split-plot based on a randomized complete block design with four repeats. Irrigation as the main factor in four levels of 100% (full irrigation), 75% and 50% of the plant water requirements with non-irrigation (dryland), and salicylic acid as the sub-factor in four levels of 0, 0.75, and 1 mmol, were the studied factors in this research. The combined analysis of three-year data showed that drought reduced leaf relative water content (RWC), membrane stability index (MSI), chlorophyll content, onion yield, and increased activity of antioxidant enzymes, proline content, tang, and allicin of shallots. Shallot spraying with salicylic acid improved leaf RWC, MSI, chlorophyll content, and onion yield. The highest yield of onion (1427 gr m−2) belonged to full irrigation and foliar application of 1 mmol salicylic acid. The lowest yield (419.8 gr m−2) belonged to plats with non-irrigation and non-application of salicylic acid. By improving the effective physiological traits in resistance to water deficit, salicylic acid adjusted the effects of water deficit on the yield of shallots. Foliar application of 1 mmol salicylic acid in dryland and irrigation of 50% of the plant water requirement increased onion yield by 15.12% and 29.39%, respectively, compared to the control treatment without salicylic acid.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3