Recent Advances in Photocatalytic Oxidation of Methane to Methanol

Author:

Yuniar Gita,Saputera Wibawa HendraORCID,Sasongko Dwiwahju,Mukti Rino R.,Rizkiana Jenny,Devianto Hary

Abstract

Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of methane to methanol is often considered a “holy grail” reaction in catalysis. However, methanol production through the thermal catalytic process is thermodynamically and economically unfavorable due to its high energy consumption, low catalyst stability, and complex reactor maintenance. Photocatalytic technology offers great potential to carry out unfavorable reactions under mild conditions. Many in-depth studies have been carried out on the photocatalytic conversion of methane to methanol. This review will comprehensively provide recent progress in the photocatalytic oxidation of methane to methanol based on materials and engineering perspectives. Several aspects are considered, such as the type of semiconductor-based photocatalyst (tungsten, titania, zinc, etc.), structure modification of photocatalyst (doping, heterojunction, surface modification, crystal facet re-arrangement, and electron scavenger), factors affecting the reaction process (physiochemical characteristic of photocatalyst, operational condition, and reactor configuration), and briefly proposed reaction mechanism. Analysis of existing challenges and recommendations for the future development of photocatalytic technology for methane to methanol conversion is also highlighted.

Funder

Bandung Institute of Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3