Approaches for Selective Oxidation of Methane to Methanol

Author:

Sharma RichaORCID,Poelman HildeORCID,Marin Guy B.ORCID,Galvita Vladimir V.ORCID

Abstract

Methane activation chemistry, despite being widely reported in literature, remains to date a subject of debate. The challenges in this reaction are not limited to methane activation but extend to stabilization of the intermediate species. The low C-H dissociation energy of intermediates vs. reactants leads to CO2 formation. For selective oxidation, nature presents methane monooxygenase as a benchmark. This enzyme selectively consumes methane by breaking it down into methanol. To assemble an active site similar to monooxygenase, the literature reports Cu-ZSM-5, Fe-ZSM-5, and Cu-MOR, using zeolites and systems like CeO2/Cu2O/Cu. However, the trade-off between methane activation and methanol selectivity remains a challenge. Density functional theory (DFT) calculations and spectroscopic studies indicate catalyst reducibility, oxygen mobility, and water as co-feed as primary factors that can assist in enabling higher selectivity. The use of chemical looping can further improve selectivity. However, in all systems, improvements in productivity per cycle are required in order to meet the economical/industrial standards.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference132 articles.

1. Direct conversion technologies of methane to methanol: An overview

2. Biological conversion of methane to methanol

3. Isothermal Cyclic Conversion of Methane into Methanol over Copper‐Exchanged Zeolite at Low Temperature

4. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop,2016

5. Methanol: Manufacture and Uses;Kennedy,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3