Prioritisation of Compounds for 3CLpro Inhibitor Development on SARS-CoV-2 Variants

Author:

Jukič MarkoORCID,Škrlj BlažORCID,Tomšič Gašper,Pleško Sebastian,Podlipnik ČrtomirORCID,Bren Urban

Abstract

COVID-19 represents a new potentially life-threatening illness caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CLpro, the main viral protease, as a valuable therapeutic target that possesses no mutations in the described pandemically relevant variants. 3CLpro could therefore provide trans-variant effectiveness that is supported by structural studies and possesses readily available biological evaluation experiments. With this in mind, we performed a high throughput virtual screening experiment using CmDock and the “In-Stock” chemical library to prepare prioritisation lists of compounds for further studies. We coupled the virtual screening experiment to a machine learning-supported classification and activity regression study to bring maximal enrichment and available structural data on known 3CLpro inhibitors to the prepared focused libraries. All virtual screening hits are classified according to 3CLpro inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of 208 chemical descriptors. Last but not least, we analysed if the current set of 3CLpro inhibitors could be used in activity prediction and observed that the field of 3CLpro inhibitors is drastically under-represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that this methodology of 3CLpro inhibitor library preparation and compound prioritisation far surpass the selection of compounds from available commercial “corona focused libraries”.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3