Mechanistic Insights of Polyphenolic Compounds from Rosemary Bound to Their Protein Targets Obtained by Molecular Dynamics Simulations and Free-Energy Calculations

Author:

Lešnik SamoORCID,Jukič MarkoORCID,Bren Urban

Abstract

Rosemary represents an important medicinal plant that has been attributed with various health-promoting properties, especially antioxidative, anti-inflammatory, and anticarcinogenic activities. Carnosic acid, carnosol, and rosmanol, as well as the phenolic acid ester rosmarinic acid, are the main compounds responsible for these actions. In our earlier research, we carried out an inverse molecular docking at the proteome scale to determine possible protein targets of the mentioned compounds. Here, we subjected the previously identified ligand–protein complexes with HIV-1 protease, K-RAS, and factor X to molecular dynamics simulations coupled with free-energy calculations. We observed that carnosic acid and rosmanol act as viable binders of the HIV-1 protease. In addition, carnosol represents a potential binder of the oncogene protein K-RAS. On the other hand, rosmarinic acid was characterized as a weak binder of factor X. We also emphasized the importance of water-mediated hydrogen-bond networks in stabilizing the binding conformation of the studied polyphenols, as well as in mechanistically explaining their promiscuous nature.

Funder

Slovenian Research Agency

Slovenian of Education, Science, and Sports

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3