An Ab Initio Investigation of the Geometries and Binding Strengths of Tetrel-, Pnictogen-, and Chalcogen-Bonded Complexes of CO2, N2O, and CS2 with Simple Lewis Bases: Some Generalizations

Author:

Alkorta Ibon,Legon AnthonyORCID

Abstract

Geometries, equilibrium dissociation energies (De), and intermolecular stretching, quadratic force constants (kσ) are presented for the complexes B⋯CO2, B⋯N2O, and B⋯CS2, where B is one of the following Lewis bases: CO, HCCH, H2S, HCN, H2O, PH3, and NH3. The geometries and force constants were calculated at the CCSD(T)/aug-cc-pVTZ level of theory, while generation of De employed the CCSD(T)/CBS complete basis-set extrapolation. The non-covalent, intermolecular bond in the B⋯CO2 complexes involves the interaction of the electrophilic region around the C atom of CO2 (as revealed by the molecular electrostatic surface potential (MESP) of CO2) with non-bonding or π-bonding electron pairs of B. The conclusions for the B⋯N2O series are similar, but with small geometrical distortions that can be rationalized in terms of secondary interactions. The B⋯CS2 series exhibits a different type of geometry that can be interpreted in terms of the interaction of the electrophilic region near one of the S atoms and centered on the C∞ axis of CS2 (as revealed by the MESP) with the n-pairs or π-pairs of B. The tetrel, pnictogen, and chalcogen bonds so established in B⋯CO2, B⋯N2O, and B⋯CS2, respectively, are rationalized in terms of some simple, electrostatically based rules previously enunciated for hydrogen- and halogen-bonded complexes, B⋯HX and B⋯XY. It is also shown that the dissociation energy De is directly proportional to the force constant kσ, with a constant of proportionality identical within experimental error to that found previously for many B⋯HX and B⋯XY complexes.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3