Variability of Properties Modulating the Biosynthesis of Biologically Active Compounds in Young Barley Treated with Ozonated Water

Author:

Matłok Natalia1ORCID,Piechowiak Tomasz2ORCID,Kapusta Ireneusz3ORCID,Józefczyk Radosław2,Balawejder Maciej2ORCID

Affiliation:

1. Department of Food and Agriculture Production Engineering, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszow, Poland

2. Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszow, Poland

3. Department of Food Technology and Human Nutrition, Rzeszow University, St. Zelwerowicza 4, 35-601 Rzeszow, Poland

Abstract

This paper presents the effects of irrigating barley plants with different type of water solutions saturated with gaseous ozone generated from atmospheric air. The study investigated the effects of the applied types of water on the modulation of the biosynthesis of selected bioactive compounds (content of total polyphenols, small molecule antioxidants, vitamin C) in the produced plant material. A number of transformations of reactive oxygen species (ROS) and nitrogen compounds have also been postulated; these are observed during the saturation of water with gaseous O3 and 30 min after the end of the process. It was shown that after the process of water saturation with gaseous O3, the gas later is converted to compounds with high oxidative potential and good stability; these, in turn, lead to the oxidation of oxidates generated from atmospheric nitrogen into nitrates, which exhibit fertilising properties. Thirty minutes after the process of H2O saturation with gaseous O3 was completed, the tests showed the highest concentrations of nitrates and the relatively high oxidative potential of the solution originating from H2O2 with a low concentration of the dissolved O3. This solution exhibited the highest activity modulating the biosynthesis of polyphenols, small molecule antioxidants and vitamin C in young barley plants. The resulting differences were significant, and they were reflected by 15% higher total polyphenol content, 35% higher antioxidative potential and 57% greater content of vitamin C compared to the control specimens (plants treated with fresh H2O).

Funder

Minister of Science and Higher Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3