Abstract
CeO2 nanoparticle-loaded MnO2 nanoflowers, prepared by a hydrothermal method followed by an adsorption-calcination technique, were utilized for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. The effects of Ce/Mn ratio and thermal calcination temperature on the NH3–SCR activity of the CeO2-MnO2 nanocomposites were studied comprehensively. The as-prepared CeO2-MnO2 catalysts show high NOx reduction efficiency in the temperature range of 150–300 °C, with a complete NOx conversion at 200 °C for the optimal sample. The excellent NH3–SCR performance could be ascribed to high surface area, intimate contact, and strong synergistic interaction between CeO2 nanoparticles and MnO2 nanoflowers of the well-designed composite catalyst. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) characterizations evidence that the SCR reaction on the surface of the CeO2-MnO2 nanocomposites mainly follows the Langmuir–Hinshelwood (L-H) mechanism. Our work provides useful guidance for the development of composite oxide-based low temperature NH3–SCR catalysts.
Funder
Shenzhen Science and Technology Innovation Committee
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献