Metal Oxide-based Nanoparticles for Environmental Remediation: Drawbacks and Opportunities

Author:

Santoyo Víctor Ruiz,Serrano-Diaz Paloma,Andrade-Espinoza Beatriz AdrianaORCID,Fernández-Arteaga Yaily,Arenas-Arrocena Ma. ConcepciónORCID

Abstract

The use of structured metal oxide-based nanoparticles for environmental proposals arises from the adverse impact of human industrial activities that threaten the fragile balance of the environment. These nanomaterials characterized by their chemical and mechanical stability, modifiable bandgap, remarkable textural features, and notable optoelectronic properties have an important role in removing pollutants from the environment. Metal oxide-based nanoparticles have demonstrated remarkable capabilities by removing pollutants such as herbicides, microplastics, dyes, pesticides, antibiotics, microbial organisms, and heavy metals. Additionally, these materials can be incorporated into sensing devices for real-time monitoring and identification of pollutants in air, water, and soil, facilitating environmental risk assessment and pollution control. Nevertheless, the successful implementation of semiconductor nanoparticles faces drawbacks and challenges, including scalability, cost-effectiveness, and potential environmental impacts, necessitating thorough consideration. Ongoing research and development efforts are crucial to further explore the potential of semiconductor nanoparticles for practical solutions. The anticipated growth in the use of these nanomaterials in various commercial applications foresees a more sustainable and environmentally friendly future. Thus, this document aims to present how nanoparticles with diverse forms and adjustable physicochemical properties are a tool to conserve the ecological balance.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3