Abstract
The effects of microbial transglutaminase (MTGase) cross-linking on the physicochemical characteristics of individual caseins were investigated. MTGase was used to modify three major individual caseins, namely, κ-casein (κ-CN), αS-casein (αS-CN) and β-casein (β-CN). The SDS-PAGE analysis revealed that MTGase-induced cross-linking occurred during the reaction and that some components with high molecular weights (>130 kDa) were formed from the individual proteins κ-CN, αS-CN and β-CN. Scanning electron microscopy (SEM) and particle size analysis respectively demonstrated that the κ-CN, αS-CN and β-CN particle diameters and protein microstructures were larger and polymerized after MTGase cross-linking. The polymerized κ-CN (~749.9 nm) was smaller than that of β-CN (~7909.3 nm) and αS-CN (~7909.3 nm). The enzyme kinetics results showed KM values of 3.04 × 10−6, 2.37 × 10−4 and 8.90 × 10−3 M for κ-CN, αS-CN and β-CN, respectively, and, furthermore, kcat values of 5.17 × 10−4, 1.92 × 10−3 and 4.76 × 10−2 1/s, for κ-CN, αS-CN and β-CN, respectively. Our results revealed that the cross-linking of β-CN catalyzed by MTGase was faster than that of αS-CN or κ-CN. Overall, the polymers that formed in the individual caseins in the presence of MTGase presented a higher molecular weight and larger particles.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献